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Abstract Antibiotic-induced perturbation of the human gut flora is expected to play an

important role in mediating the relationship between antibiotic use and the population prevalence

of antibiotic resistance in bacteria, but little is known about how antibiotics affect within-host

resistance dynamics. Here we develop a data-driven model of the within-host dynamics of

extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae. We use blaCTX-M (the

most widespread ESBL gene family) and 16S rRNA (a proxy for bacterial load) abundance data from

833 rectal swabs from 133 ESBL-positive patients followed up in a prospective cohort study in

three European hospitals. We find that cefuroxime and ceftriaxone are associated with increased

blaCTX-M abundance during treatment (21% and 10% daily increase, respectively), while treatment

with meropenem, piperacillin-tazobactam, and oral ciprofloxacin is associated with decreased

blaCTX-M (8% daily decrease for all). The model predicts that typical antibiotic exposures can have

substantial long-term effects on blaCTX-M carriage duration.

Introduction
Antibiotic use can increase resistance prevalence in a host population through multiple pathways

(Lipsitch and Samore, 2002). It may: (i) affect the duration of resistance carriage and hence trans-

mission potential; (ii) increase bacterial load of resistant organisms and thus increase transmission; or

(iii) selectively suppress host microbial flora where resistance is lacking, which may reduce the poten-

tial for transmission of sensitive organisms and also render hosts more susceptible to acquiring resis-

tant bacteria. As well as being important for understanding population dynamics, levels of intestinal

resistance are also likely to be important from an individual patient perspective. It has been shown,

for instance, that the digestive tract is the primary source of enterobacteria causing bloodstream

infections in haematological patients, and a high abundance of beta-lactam resistant enterobacteria

in the gut flora is predictive of a high risk of a corresponding drug-resistant bloodstream infection

(Woerther et al., 2015). Moreover, colonization with extended-spectrum beta-lactamase (ESBL)-

producing Enterobacteriaceae amongst patients receiving cephalosporin-based prophylaxis prior to

colorectal surgery is associated with a more than two-fold increase in risk of surgical site infection

(Dubinsky-Pertzov et al., 2019). Therefore, quantifying within-host selection dynamics should lead

to a better understanding of both individual patient-level and population-level risks and benefits of

antibiotic use.
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Here we focus on Enterobacteriaceae, a bacterial family that is commonly found in the healthy

mammalian gut microbiome (Donnenberg, 1979). Some member genus-species—Klebsiella pneu-

moniae, Escherichia coli, Enterobacter spp.—are important opportunistic human pathogens that can

cause urinary tract, bloodstream, and intra-abdominal infections, as well as hospital-acquired respira-

tory tract infections. A major concern is the global increase in extended-spectrum beta-lactamase-

producing organisms in this family (Coque et al., 2008; Tacconelli et al., 2018; Valverde et al.,

2004). ESBL genes – of which the most important and globally widespread is the blaCTX-M gene fam-

ily – confer resistance to clinically important broad-spectrum antimicrobials, such as third generation

cephalosporins (Paterson, 2000). These genes commonly reside on large conjugative plasmids (Bon-

net, 2004), and are co-carried with other antibiotic resistance determinants, making them a good

marker for multi-drug resistance (MDR) in strains of Enterobacteriaceae (Schwaber et al., 2005).

Because Enterobacteriaceae have their main biological niche in the gut microbiome (Masci, 2005),

these bacteria are exposed to substantial collateral selection from antibiotics used to treat or pre-

vent infections with other organisms (‘bystander selection’ [Tedijanto et al., 2018]). Quantifying the

effects of antibiotic therapy on within-host resistance dynamics will help us to better understand the

potential for selection of drug-resistant Enterobacteriaceae associated with different patterns of

antibiotic usage.

In this work, we analysed sequential rectal swabs (n = 833) from 133 ESBL positive hospitalised

patients from three hospitals (Italy, Romania, Serbia) to study the dynamics of antibiotic resistance

gene abundance. Both blaCTX-M gene and, as a proxy for total bacterial load, 16S rRNA gene abun-

dance were determined using quantitative polymerase chain reaction (qPCR). Previously, using a

subset of these data, Meletiadis et al. demonstrated a statistical association between exposure to

ceftriaxone and increases in blaCTX-M normalised by total bacterial load. Here, we addressed some

broader questions. We studied the effects of a range of different antibiotics on the abundance of

blaCTX-M and of 16S rRNA, and we aimed to fully characterise the within and between host variation

of blaCTX-M and 16S rRNA and their within-host dynamics. For this purpose we developed a novel

eLife digest Bacteria that are resistant to antibiotics are a growing global health crisis. One

type of antibiotic resistance arises when certain bacteria that can produce enzymes called extended-

spectrum beta-lactamases (or ESBLs for short) become more common in the gut. These enzymes

stop important antibiotics, like penicillin, from working. However, exactly which antibiotics and

treatment durations contribute to the emergence of this antibiotic resistance remain unknown.

Now, Niehus et al. find certain antibiotics that are associated with an increase in the number of

gut bacteria carrying antibiotic resistance genes for ESBL enzymes. First, rectal swabs collected from

133 patients from three European hospitals were analysed to measure the total gut bacteria and the

number of genes for ESBL enzymes. These samples had been collected at several time points

including when the patient was first admitted to hospital, then every two to three days during their

stay, and finally when they were discharged.

Combining the analysis of the samples with details of the patients’ charts showed that treatment

with two antibiotics: cefuroxime and ceftriaxone, was linked to an increase in ESBL genes in the gut

bacteria. Other antibiotics – namely, meropenem, piperacillin-tazobactam and oral ciprofloxacin –

were associated with a decrease in the number of bacteria with ESBL genes. Niehus et al. then

performed further analysis to see if different treatment regimens affected how long patients were

carrying gut bacteria with ESBL genes. This predicted that a longer course of meropenem, 14 days

rather than 5 days, would shorten the length of time patients carried ESBL-resistant bacteria in their

guts by 70%, although this effect will likely depend on the location of the hospital and the local

prevalence of other types of antibiotic resistance.

This analysis reveals new details about how antibiotic treatment can affect ESBL resistance genes.

More studies are needed to understand how antibiotics affect other antibiotic resistance genes and

how resistant bacteria spread. This will help scientists understand how much specific antibiotic

regimens contribute to antibiotic resistance. It may also help scientists develop new antibiotic

treatment strategies that reduce antibiotic resistance.
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dynamic model, a state-space model that we fit to fine-grained patient-level measurements and anti-

biotic exposure data. By incorporating hidden-state dynamics our model allowed us to dissect and

quantify different types of data variability, such as noise from qPCR measurement or from the DNA

extraction process, and to separate this from the within-host processes. In this way we directly esti-

mated ecologically important parameters such as strength of resistance amplification during antibi-

otic treatment or the rate of decline of blaCTX-M. We then used our model to make counterfactual

predictions about how alternative choices of treatment would impact blaCTX-M carriage duration. The

development of this data-driven within-host model and its use in exploring the impact of antibiotic

treatment on amplification and loss of resistance is an important step in furthering our quantitative

mechanistic understanding of how antibiotic use drives changes in the prevalence of resistance in a

population.

Results

Patient cohort and treatment
The study enrolled a total of 1102 patients who were screened positive for ESBL producing Entero-

bacteriaceae at admission, and 133 patients (12%) gave consent to be included in the study: 51

(38%) from Romania; 52 (39%) from Serbia; and 30 (23%) from Italy. The median age was 59 years

(range of 23–88), and 46% were female. The median length of hospital stay was 15 days (maximum

of 53 days). All patients apart from one had two or more rectal swabs taken, with a median of five

swabs per patient (range of 1–15). 114 out of 133 (86%) enrolled patients received antibiotics during

their stay and 85 of these 114 (75%) received two or more different antibiotics, which were given

both in mono- and combination therapy (see Figure 1). A total of 3993 patient days were observed,

of which 2686 (67%) were days with antibiotic therapy (mono- or combination therapy). Table 1 sum-

marises important details of the study. Note that the antibiotics that we considered in this study

were exclusively antibacterial drugs, and we ignored treatment with anti-tuberculosis drugs (pyrazi-

namide and isoniazid), which occurred only in two patients.

The different antibiotic classes, ranked by proportion of treatment days, were cephalosporins

25% ), fluoroquinolones (18%), penicillins (9%), nitroimidazole derivatives (metronidazole) (9%), gly-

copeptides (8%), carbapenems (5%), and others (26%). Two thirds of antibiotic treatment days were

from intravenously administered antibiotics and one third from oral administration. Details on indi-

vidual antibiotics are given in Table 2.

Resistance dynamics
The time-varying blaCTX-M abundance exhibits a diverse range of dynamic patterns, including mono-

tonic increases and decreases, as well as highly variable non-monotonic behaviour (Figure 1). Quali-

tatively similar fluctuations in blaCTX-M abundance were seen both in the presence and absence of

antibiotic treatment. To determine whether this high level of dynamic variation contained a meaning-

ful biological signal, we first studied temporal autocorrelation. If the observed variability is driven by

observation uncertainty – for instance through the swab procedure, DNA extraction, or qPCR pro-

cess – we expect autocorrelation close to zero in the time series. Conversely, if the observed fluctua-

tions reflect true within-host dynamics in carriage levels, we would generally expect to see positive

autocorrelation. We found a clear signal of first-order autocorrelation for both the blaCTX-M and the

16S rRNA gene time series, though autocorrelation was substantially stronger for the blaCTX-M data

(Figure 1—figure supplement 1a and b). Using a Bayesian state-space model that decomposes the

time series data into an observation component (representing noise due to variability in qPCR runs,

and in the procedure of swab taking and sample processing) and a process component (due to the

within-host dynamics), we estimated that much of the variability in blaCTX-M and 16S rRNA outcomes

was due to measurement error associated with the swab procedure (median estimate of the propor-

tion of total abundance variability attributable to swab error [90% credible interval [CrI]] of 54%

[44%, 57%] and 73% [68%, 77%], respectively) (see Figure 1—figure supplement 1c).

However, the blaCTX-M data in particular were found to also contain a strong process component

signal, indicating that a median estimate of 36% (90% CrI 30%, 43%) of the variability in the qPCR

outcomes was due to underlying within-host dynamics (Figure 1—figure supplement 1c). To further

investigate the determinants of blaCTX-M gene variation, we explored how much the blaCTX-M gene
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load varied between different patients or, over time, within the same patient. Using a Bayesian

state-space model (see Methods and Materials) we found 16S rRNA gene abundance to be two

orders of magnitude higher than blaCTX-M (median ratio 16S / blaCTX-M [90% CrI] 158 [88, 181]), with

an estimated coefficient of variation (ratio of standard deviation to the mean) of 5.5 for 16S rRNA

and 32.1 for blaCTX-M. Between-patient abundance of blaCTX-M showed substantially more variability

than within-patient abundance (median ratio [90% CrI] 134 [18, 1422]). In contrast, 16S rRNA gene

abundance had similar between-patient and within-patient variability (median ratio [90% CrI] 0.8

[0.4,1.7]) (Figure 2). We noted that the rank plots (Figure 1—figure supplement 1a) indicate some

convergence problems of sbio;16S, but several independent runs of the MCMC algorithm with differ-

ent initial values consistently arrived at the same mean and standard deviation of the posterior

estimate.
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Figure 1. Time series plots demonstrating the diverse range of dynamical patterns of blaCTX-M resistance gene

abundance across the 132 patients with two or more samples. The x-axis scale is identical across panels, the

length of one week is given for scale in the top-left corner. Timelines are ordered by length. The y-axis scale

differs between panels, with the space between vertical grey lines representing a 10-fold change in the absolute

blaCTX-M gene abundance (measured in copy numbers). The left-hand side shows patients who received antibiotic

treatment (n = 113), and the two right-hand side columns are patients without antibiotic treatment (n = 19). For

clarity, we show only the twelve most frequently used antibiotics in distinct colours and other antibiotics in light

grey.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Exploration of autocorrelation and different sources of data variability.
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Associating resistance and antibiotic treatment
The change in relative resistance between samples, measured as blaCTX-M abundance divided by 16S

rRNA gene abundance, was only slightly elevated in time intervals where antibiotics were given com-

pared to those where they were not (Figure 3a).

However, use of antibiotics with activity against Enterobacteriaceae to which carriage of blaCTX-M
does not confer resistance (colistin, meropenem, ertapenem, imipenem, amoxicillin-clavulanic acid,

ampicillin-sulbactam, piperacillin-tazobactam, gentamicin, amikacin, ciprofloxacin, ofloxacin, levo-

floxacin, tigecycline, doxicycline) was associated with a modest decrease in blaCTX-M abundance

(Figure 3b). In contrast, the use of antibiotics with broad spectrum killing activity and to which car-

riage of blaCTX-M does confer resistance (cefepime, ceftazidime, ceftriaxone, cefotaxime, cefuroxime,

amoxicillin, ampicillin) was associated with substantially higher increases in relative blaCTX-M abun-

dance (Figure 3c).

Dynamic antibiotic effect model
Fitting a dynamic model of blaCTX-M abundance and 16S rRNA abundance to the data (133 patients,

833 swabs, 3361 qPCR measurements), we found that cefuroxime and ceftriaxone were associated

with increases in both absolute blaCTX-M abundance (mean daily increase [90% CrI] 21% [1%, 42%]

and 10% [4%, 17%], respectively) and relative blaCTX-M abundance (14% [-1%, 30%] and 11% [5%,

17%], respectively) (Figure 4). Piperacillin-tazobactam, meropenem and ciprofloxacin (when given

Table 1. Summary of the study.

Number of participating
hospitals 3 (Serbia, Italy, Romania)

Study duration 2 years (Jan 2011 - Dec 2012)

Inclusion criteria Inpatients of medical and surgical wards, adults, non-pregnant, ESBL producting Enterobacteriaceae carriers (at
admission)

Number of patients followed up 133 (including one with a single swab taken)

Intervals between rectal swabs two to three days

qPCR targets blaCTX-M (ESBL resistance gene), 16S rRNA (total bacterial load)

Number of different antibiotics
used

35

This study (registration number NCT01208519) was conducted by the SATURN consortium, supported by the European Commission under the 7th Frame-

work Program.

Table 2. Overview of antibiotic treatments showing the ten most used antibiotics in this patient

cohort.

Intravenous (iv), oral (or), and intramuscular (im) route administration is given in percent of treatment

days.

Antibiotic Number of treated patients (total n=133) Route

Ceftriaxone 64 ( 98% iv , 2% im )

Ciprofloxacin 34 ( 67% iv , 33% or )

Metronidazole 20 ( 50% iv , 50% or )

Cefuroxime 13 ( 100% iv , 0% or )

Vancomycin 13 ( 86% iv , 14% or )

Meropenem 10 ( 100% iv , 0% or )

Amikacin 9 ( 100% iv , 0% or )

Amoxicillin-clavulanic acid 9 ( 57% iv , 43% or )

Piperacillin-tazobactam 7 ( 100% iv , 0% or )

Imipenem 5 ( 100% iv , 0% or )
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orally) were negatively associated with both blaCTX-M (�8% [�18%, 2%], �8% [�17%, 1%], and �8%

[�17%, 2%], respectively) and 16S rRNA gene abundance (�3% [�8%, 1%], �3% [�7%, 1%], and

�1% [�6%, 3%], respectively), although uncertainty was large (Figure 4). Their effect on relative

resistance (blaCTX-M/16S rRNA) also appeared to be negative (�5% [�14%, 5%] for piperacillin-tazo-

bactam, �5% [�14%, 4%] for meropenem, �7% [�15%, 3%] for oral ciprofloxacin). Intravenously

administered ciprofloxacin did not show these effects. Imipenem and meropenem had similar effects

on blaCTX-M abundance, while no clear effects were evident for amikacin, metronidazole, and amoxi-

cillin-clavulanic acid (Figure 4). The out of sample prediction accuracy using approximated leave-

one-out cross-validation (loo-cv) (Watanabe, 2010) (see Materials and methods) for the dynamic

model with antibiotic effects is higher than the accuracy of the model without antibiotic effects

(Dloo-cv = 4.2 ).

With the dynamic model we are able to make predictions about the time required for the blaCTX-

M gene to fall below detection levels. To achieve this, we added to our stochastic model a threshold

below which the blaCTX-M gene cannot be detected (see Materials and mthods). Below this threshold

the gene may either be lost from the bacterial community, or it may exist in very small reservoirs for

example in persister cells (Balaban et al., 2019). The predictions of detectable carriage duration

show a high degree of uncertainty, visible as long-tailed predictive distributions (Figure 5). Because

of the skew, we report here the median instead of the mean together with 80% credible intervals.

We chose the duration of different antimicrobial therapies according to clinical guidelines. Assuming
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Figure 2. Variability of 16S abundance and blaCTX-M abundance within and between patient time series using a

Bayesian hierarchical model. In this model, abundance is distributed around individual patient intercepts, which

are distributed around a common population intercept. The plot shows individual patient intercepts given as

mean posterior estimates (coloured dots) together with posterior predictions for sequence abundance for each

patient (grey bars show 80% central quantiles).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Diagnostic plots of MCMC samples.
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that the estimated antibiotic associations represent causal effects, we find that a single eight day

course of cefuroxime or a 14 day course of ceftriaxone substantially prolongs carriage of blaCTX-M,

by a median estimate of 147% (80% CrI 13.4%, 577%) for cefuroxime and 120% (80% CrI �8.6%,

492%) for ceftriaxone versus no exposure (Figure 5). Addition of oral ciprofloxacin to a course of

amoxicillin-clavulanic acid or ceftriaxone reduces blaCTX-M carriage duration (by approximately 51%

[80% CrI �115%, 89%] and 48% [80% CrI �71.1%, 86%]) (Figure 5). A typical 14 day course of mero-

penem or a 8 day course of piperacillin-tazobactam reduce blaCTX-M carriage duration relative to no

treatment (by approximately 42% [80% CrI �25%, 75%] and 41% [80% CrI �45%, 71%], respectively),

and each reduces blaCTX-M carriage even more relative to a 7 day course of combined ceftriaxone
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Figure 3. Association of antibiotic use with change in relative resistance (abundance of blaCTX-M divided by

abundance of 16S rRNA). The upper panels show the change in relative resistance between all neighbouring

timepoints (black dots), dashed horizontal lines in grey indicate the region of no change. Pairs of violin scatter

plots (with the mean values shown as red bars) contrast different treatment that occurred between those

timepoints. ‘Yes’ indicates treatment with specified antibiotics and ‘No’ means treatment with other antibiotics or

no treatment. The lower three panels show the distribution of mean differences of the change in relative resistance

between treatment groups generated through treatment-label permutation (areas in darker grey show 80% central

quantiles). The distributions are overlaid with the observed difference (red vertical line). Panel (a) compares

treatment with any antibiotic versus no antibiotic (number of intervals without treatment/number of intervals with

treatment are 251(N)/449(Y)). Panel (b) compares treatment with antibiotics with activity against

Enterobacteriaceae and to which blaCTX-M does not confer resistance (colistin, meropenem, ertapenem, imipenem,

amoxicillin-clavulanic acid, ampicillin-sulbactam, piperacillin-tazobactam, gentamicin, amikacin, ciprofloxacin,

ofloxacin, levofloxacin, tigecycline, doxicycline) with all other treatment, including no treatment (445(N)/255(Y)).

Finally, in panel (c) we consider antibiotics with broad-spectrum activity but to which blaCTX-M does confer

resistance (cefepime, ceftazidime, ceftriaxone, cefotaxime, cefuroxime, amoxicillin, ampicillin) (513(N)/187(Y)).
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plus amikacin (by approximately 69% [80% CrI 20%, 89%] and 66% [80% CrI �7%, 88%], respectively)

(Figure 5). Finally, a 14 day course of meropenem reduces blaCTX-M resistance carriage relative to a

shorter 5 day course (by approximately 69% [80% CrI 20%, 89%]) (Figure 5).

Discussion
By fitting a dynamic model accounting for both observation noise and within-host dynamics to time

series data from 133 patients, we quantified the association between antibiotic exposure and

changes in rectal swab abundance of gut bacteria and blaCTX-M resistance genes. The largest effects

were found for exposures to the second and third generation cephalosporins, cefuroxime and ceftri-

axone, both of which were associated with increases in blaCTX-M abundance. Forward simulations

indicated that if these associations are causal, exposure to typical courses of these antibiotics would

be expected to more than double the carriage duration of blaCTX-M. Both cefuroxime and ceftriax-

one have broad-spectrum killing activity (Nahata and Barson, 1985; Neu and Fu, 1978), but have

limited activity against ESBL-producing organisms (Livermore and Brown, 2001; Sorlózano et al.,

2007). Therefore, a direct selective effect of these two antibiotics is biologically plausible to account

for the above finding.

Though credible intervals were wide, meropenem, piperacillin-tazobactam, and oral ciprofloxacin

– all common agents for treating hospital-acquired infections (Lautenbach et al., 2001;

Masterton et al., 2003; Paterson, 2006) – were associated with reductions in blaCTX-M abundance.

All three are broad-spectrum antibiotics with activity against ESBL producers in the absence of spe-

cific co-resistance, suggesting that this association may at least in part be a causal effect. These anti-

biotics were also associated with a negative effect on relative resistance (blaCTX-M divided by 16S

rRNA gene abundance). This observation can be explained by a general reduction of bacterial bio-

mass that leads the blaCTX-M abundance to drop below detection levels. In line with this, our simula-

tions suggested that a typical course of meropenem or of piperacillin-tazobactam would reduce
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Figure 4. Estimated effects of different antibiotics on within-host dynamics from a multivariable model. The bars

show estimated daily effects of individual antibiotics on the absolute blaCTX-M abundance (red) and 16S rRNA

abundance (light blue) indicating the 80% and 95% highest posterior density intervals (thick and thin horizontal

bars, respectively). The model also gives the antibiotic effect on the blaCTX-M/16S relative resistance shown as

arrows on the right-hand side. Arrows are in grey for antibiotics with mean effect estimates between �10% and

+10%, otherwise they are coloured red (positive selection) and green (negative selection). Route of antibiotic

administration (intravenous, iv; oral, or) is indicated in parenthesis.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Variability of replicate qPCR runs across the qPCR scale.

Figure supplement 2. Marginal posterior distributions for antibiotic effect parameters.

Figure supplement 3. Diagnostic plots of MCMC samples.
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blaCTX-M carriage duration relative to no treatment by about 40%, and each course reduces blaCTX-M
carriage duration by about 70% relative to a combined course of ceftriaxone plus amikacin. Pharma-

cokinetic models suggest that bacteriocidal serum concentrations of ceftriaxone persist for relatively

short time periods after treatment (typically between 1 hr and 4d, Garot et al., 2011). In contrast,

our model predicts that treatment effects on the gut flora can be much longer lasting (on the order

of weeks). Also, a 14 day course of meropenem is predicted to reduce ESBL resistance carriage

duration relative to a shortened course (5 days) by approximately 70%. While these findings suggest

suppression of ESBL producing bacteria by use of carbapenem as a measure to reduce the risk of

infection in high-risk patients, such a measure clearly needs to be balanced against the considerable

risk of selecting for carbapenem resistance. Finally, we also found that adding oral ciprofloxacin to

amoxicillin-clavulanic acid or ceftriaxone was associated with reductions in predicted median car-

riage duration of ESBL-producing bacteria by approximately 50%. This is in line with recent work

indicating that hospital monotherapy with cephalosporins is more strongly association with later

ESBL carriage relative to combination therapy (Tacconelli et al., 2020). Administration of oral fluoro-

quinolone to reduce faecal load of ESBL-producers in asymptomatic carriers has been used in out-

break settings with ESBL E. coli and K. pneumoniae (Paterson et al., 2001), where risk for

fluoroquinolones resistance was low. However, the wide variation in rates of ciprofloxacin resistance

amongst ESBL-producing Enterobacteriaceae across settings (Winokur et al., 2001) is likely to limit

the generalisability of this finding. Although oral ciprofloxacin showed an association with reduced

blaCTX-M abundance, intravenous ciprofloxacin showed near zero effect. Antibiotic selection for resis-

tance due to antibiotics with different routes of administration has been previously explored in a

mouse model, suggesting that, indeed, oral drug administration has stronger selective effect on

resistance than intravenous administration (Zhang et al., 2013), but similar studies for humans are
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Figure 5. Simulated predictions of blaCTX-M carriage duration under different antibiotic treatments. The distributions on the left-hand side shows model

predictions with parameter uncertainty, but assuming deterministic dynamics. The right-hand side shows the predictions with parameter uncertainty as

well as Markov process uncertainty. The darker grey areas shows the 50% credible intervals and the white lines show the median predictions. Each

density distribution is overlaid with the density line of the no treatment case (dotted line) and its median prediction (dotted vertical line). In the first five

rows, we compare predictions for treatment with amoxicillin-clavulanic acid (18 days) and ceftriaxone (14 days), and each in combination treatment with

ciprofloxacin. In the next three rows, we compare treatment with ceftriaxone plus amikacin (7 days), meropenem (14 days), and piperacillin-tazobactam

(8 days). In the final two rows, we compare a 14 day course of meropenem with a shortened course (5 days). AMC stands for amoxicillin-clavulanic acid.
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lacking. Delineating the relationship between the various routes of antibiotic administration and

resistance selection will be important for a better understanding of advantages and disadvantages

of different routes of administration.

There are are number of advantages to our modelling approach over more classical, associational

methods used in related work (Meletiadis et al., 2017). First, because we use a mechanistic model

it allows us to directly estimate ecologically important parameters such as strength of resistance

amplification under antibiotic selection, which are of inherent interest and can inform further model-

ling work. Indeed, our predictions of resistance carriage duration (Figure 5) are good examples of

the latter. Second, our model uses the variability present in the data to quantify different types of

data variability due to the data collection (noise from the qPCR machine, noise from taking the swab

and DNA extraction). This allows our model to fully propagate uncertainty to the final estimates.

Finally, rather than using only aggregate data (which loses information), our analysis is designed to

fully exploit the information available in the time series data. Our work also has a number of impor-

tant limitations, aside from the obvious risks of confounding present in this observational dataset.

Our analysis did not explicitly model changing antibiotic concentrations in the gut, nor did it attempt

to explicitly model how antibiotics affect the ecology of the gut bacterial community. While it would

have been straightforward to include a pharmacokinetic model of antibiotic concentrations (similar

studies have been performed in mice [Jumbe et al., 2003] and pigs [Nguyen et al., 2014]), disen-

tangling direct effects of antibiotic concentrations from indirect effects mediated by other compo-

nents of the gut flora is far more challenging and beyond the scope of what we considered

appropriate with the available data. Instead, our model assumed multiplicative antibiotic effects,

which we considered a reasonable simplification of the underlying mechanisms. Multiplicative effects

imply that antibiotics alter the daily total bacterial growth rate (16S abundance) and the growth of

resistant bacteria relative to the average bacterium (blaCTX-M/16S), but it does not allow for more

complex fitness effects due to, for example, synergies between antibiotics (MacLean et al., 2010),

or density-dependent effects, whereby antibiotic-mediated killing may depend on bacterial density

(Udekwu et al., 2009). Further, many non-antibiotic drugs have been shown to have an impact on

human gut bacteria (Maier et al., 2018), but only antibacterials were considered in our analysis.

Lastly, all patients in this study were identified (and consenting) ESBL-carriers. Therefore, apart from

the potential for selection bias, we assumed that all changes in blaCTX-M abundance were due to

within-host dynamics, neglecting the possibility of new acquisitions, which should be the scope for

other modelling frameworks that integrate both within- and between-host dynamics.

Antibiotic impact on the human gut microbiome is likely to be an important mediator for the

increase of bacterial resistance globally (Donskey, 2004; Relman and Lipsitch, 2018). A large body

of theory has been developed that demonstrates the role of within-host processes for understanding

population-wide selection of resistance through antibiotic use (Blanquart, 2019; Davies et al.,

2019; Webb et al., 2005; Knight et al., 2018; Lipsitch et al., 2000; Lipsitch and Samore, 2002;

Webb et al., 2005). However, surprisingly few studies have used data to quantify the effect of anti-

biotic treatment on resistance abundance within individual gut microbiomes. Two studies involving

patients admitted to intensive care units looked at the effect of a preventative antibiotic cocktail

(selective digestive decontamination) on gut microbiome resistance in patients, with one study

(including n = 13 patients) finding no clear effect (Buelow et al., 2014), and the other (n = 10) show-

ing increases of four different resistance genes associated with treatment (Buelow et al., 2017).

Gibson et al. (2016) studied the faecal metagenomics of preterm infants (n = 84) over time and

found that treatment with antibiotics was correlated with enrichment of both cognate and noncog-

nate resistance markers. But none of these studies attempted to model resistance dynamics. The

modelling framework we have developed enables testable predictions about the impact of different

antibiotics and lengths of treatment on the duration of carriage of resistant determinants above

detection threshold. Such understanding is an important step toward understanding the spread of

antibiotic resistance.

The development of a mechanistic understanding of the relationship between antibiotic use in a

population and the proportion of this population in whom resistance can be detected relies on quan-

tifying the antibiotic effects in individual exposed patients, as we do here, but also on quantifying

the knock-on effects on transmission to contacts. These indirect effects are likely to be considerable.

A recent study in Dutch travellers returning to the Netherlands who had acquired ESBL-producing

Enterobacteriaceae carriage overseas found that their new carriage status was associated with a
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150% increase in the daily risk of non-carrying household members also becoming ESBL-positive

(Arcilla et al., 2017). Developing mechanistic models for the spread of ESBLs and other resistance

determinants within host populations accounting for direct and indirect antibiotic effects is an impor-

tant priority for future research. Such models would help us to understand and predict how changes

in antibiotic usage patterns affect the prevalence of antimicrobial resistance in a community and ulti-

mately help to prioritise interventions to reduce the burden of antimicrobial resistance.

Materials and methods

Study participants and follow-up
Participants were recruited as part of an observational, prospective, cohort study that included three

hospitals (Italy, Serbia and Romania), with known high endemic prevalence of antibiotic resistance in

bacterial infections. The hospitals were serving a general urban population. The study was con-

ducted over two years from January 2011 to December 2012 as part of the multi-centre SATURN

(‘Impact of Specific Antibiotic Therapies on the prevalence of hUman host ResistaNt bacteria’) proj-

ect (NO241796; clinicaltrials.gov NTC01208519). The study enrolled adult (>18 y) inpatients of medi-

cal and surgical wards, excluding pregnant patients. Enrolled patients were screened at admission

for carriage of ESBL-producing Enterobacteriaceae with rectal swabs (E swab, Copan, Italy). Patients

who tested positive for ESBL producing Enterobacteriaceae carriage (details below) were included in

the follow-up cohort. The target cohort size was calculated to be 400 patients, based on the number

of patients that would be required to detect one log difference in resistance abundance with 90%

certainty. However, patient recruitment we slower than anticipated. For all follow-up patients

(n = 133) rectal swabs were taken every two to three days (as per study protocol) during hospitalisa-

tion, which includes one swab at admission and one at discharge. The swabs were stored at �80

degrees Celsius and sent to a central laboratory for processing. Using patient charts, the study also

collected information on antibiotics treatment, including antibiotic type, duration, and route of

administration. See Table 1 for an overview of the study details. Written informed consent and con-

sent to publish was obtained from all patients before study enrolment. All collected data was

entered de-identified into the central study database which sat in Tel Aviv in accordance with the

local rules of personal data privacy protection. The study protocol was reviewed and approved by

the Catholic University Ethics Commission in Rome, Italy (protocol P/291/CE/2010 approved on

6.4.2010) and the Clinical Center of Serbia Ethic Committee (protocol 451/34 approved on

18.03.2010). At the site in Romania patient screening for multidrug-resistant bacteria was consid-

ered, due to the local epidemiology, a quality improvement intervention and did not require institu-

tional ethical approval.

Identification of ESBL producing organism carriers
Samples taken at admission were cultured on chromogenic agar (Brilliance ESBL, Oxoid, Basing-

stoke, UK) to test for ESBL producing Enterobacteriaceae. Characteristically coloured colonies for

Enterobacteriaceae were isolated (single colony per colour), replated on blood agar and incubated

overnight in air. ESBL status was then confirmed with the double disk diffusion method according to

CLSI guidelines . These methods were performed in the laboratories on the respective hospitals (all

laboratories were ISO accredited). The above methods are not specific to any single bacterial spe-

cies, but instead identify ESBL producing specimens of the Enterobacteriaceae family, including

Escherichia coli, Klebsiella pneumoniae, or Enterobacter cloacae and others. According to the stan-

dard definition by the Centers of Disease Control (CDC/NHSN, 2018), samples taken at admission

identify community acquired organisms.

Quantitative PCR
DNA was extracted from the swab samples using QIAampDNA Stool Mini Kit (Qiagen) and a fixed

volume (4 ml) of DNA solution was used as a template for quantitative PCR (qPCR) assays. Two sin-

gleplex qPCR assays were conducted, one to assess quantity of blaCTX-M gene family with primers

CTX-M-A6 (TGGTRAYRTGGMTBAARGGCA) and CTX-M-A8 (TGGGTRAARTARGTSACCAGAA)

(product length, 175 bp) and one targeting a conserved bacterial 16S rRNA gene region bacteria

using the following primer set, 16S_E939F (GAATTGACGGGGGCCCGCACAAG) and 16S_1492R
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(TACGGYTACCTTGTTACGACTT) (product length, 597 bp) to assess total bacterial quantity. Each

singleplex qPCR run targeted either 16S gene or blaCTX-M, and included reaction tubes with negative

controls and tubes containing a standard (16S or blaCTX-M depending on the run) of different concen-

trations (eight different dilutions), which also served as a positive control. For details on reaction mix

and cycling conditions see Lerner et al., 2013. All reactions were carried out in duplicates, some-

times triplicates, representing technical replicates. The qPCR was performed at the Laboratory of

Medical Microbiology, University of Antwerp (ISO accredited). While we did not validate the 16S

qPCR measurements through, for example, spiked standard DNA preparations, the ability of qPCR

to quantify bacterial amounts in faecal samples has been shown previously (Rinttilä et al., 2004).

Time series autocorrelation
We first transformed all qPCR measurements onto a log-scale. For all patients and each time point

we then computed the mean of the qPCR duplicates (or triplicates) for blaCTX-M and 16S rRNA. To

get reliable estimates of autocorrelation, we selected only patients with more than five time points.

Separately for the blaCTX-M and 16S rRNA gene data, we computed the first-order autocorrelation

(disregarding varying spacing between time points) for each patient, and we averaged these values

across the patients. We then simulated serially uncorrelated ‘white noise’ time series, again sepa-

rately for blaCTX-M and 16S rRNA, with the same length as the patient data and with identical time

series mean and variance. Similar to the real data, we computed mean autocorrelations for the simu-

lated data and show their distribution for a large number of such simulations (n = 10,000) together

with the observed autocorrelation (Figure 1—figure supplement 1a and b). We also computed the

proportion of simulated datasets that showed an average autocorrelation equal to, or larger than,

the observed data, and we show those numbers on the arrows in Figure 1—figure supplement 1a

and b.

Estimating observation and process noise in time series
To estimate the amount of observation noise and process noise in the time series we constructed a

Bayesian state-space model that included qPCR noise, swab noise, and biological noise. This model

is given through:

qi;j;k;g ~Nðsi;j;g;sqpcrÞ;
si;j;g ~Nðxi;j;g;sswabg Þ;
xi;jþ1;g ~Nðsi;j;g;sbiogÞ;

(1)

where i denotes a given patient, j denotes a swab (one per time point), k denotes a qPCR measure-

ment (multiple repeats per swab), and g denotes the genetic target, either blaCTX-M or 16S rRNA.

The term qi;j;k;g, represents the measured quantity of genetic target g, of the kth qPCR replicate (on

a log-scale) from patient i, at time point j. In addition, there are two hidden-state parameter vectors:

si;j;g is the underlying, true sequence abundance of genetic target g that a qPCR assay with 100%

efficiency could (in theory) measure at time point j for patient i, and xi;j;g is the actual gene abun-

dance of genetic target g, in the patient at time point j for patient i, before the added noise through

the swab process and gene extraction. The unobserved variables of interest are sqpcr, the qPCR

machine error (assumed to be the same for blaCTX-M and 16S rRNA), sswabg , the swab variation of the

genetic target g, and sbiog , the variation of genetic target g from biological processes. We assigned

improper uniform (‘flat’) priors for the hidden-state parameters and generic weakly informative priors

(half-normal, N+(0,1)) for the the noise parameters sqpcr, sswabg , and sbiog . We then fitted this model

to the blaCTX-M and 16S rRNA measurements. The posteriors of the three noise parameters are

shown in Figure 1—figure supplement 1c, where we expressed each type of noise as a fraction of

the total noise. The model was fitted using Stan software (v2.19.1) (Carpenter et al., 2017) and with

additional analysis in R (R Development Core Team, 2016), and we sampled 80,000 samples from

the posterior with four independent chains and a burn-in period of 20,000 samples. We assessed

convergence by checking that Rb(Gelman and Rubin, 1992) was low (<1.01) for all parameters, and

visually by looking at the rank plots for all parameters (shown in Figure 2—figure supplement 1a).

For rank plots, posterior draws are ranked across all chains and then ranks are plotted as histograms

separately for each chain. A uniform shape of all histograms then indicates that all chains target the

same posterior (Vehtari et al., 2019).
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Between and within time series variance
For the estimation of between and within time series variation we used a Bayesian hierarchical

model, which accounted for unbalanced sampling between patients. This model used the mean pos-

terior estimates of xi;j (actual gene abundance in time point j for patient i) from the previous model,

and it took the form

xi;j;g ~Nð�i;g;swithin;gÞ;
�i;g ~Nð�g;sbetween;gÞ;

(2)

where mui;g is the mean abundance of genetic target g (blaCTX-M or 16S gene) and patient i, around

which the log-scaled measurements were assumed to be normally distributed with standard devia-

tion swithin;g, the within time series variation. The mean abundances were assumed to follow a normal

distribution with a population mean m and between-patient standard deviation sbetween. We assigned

improper uniform priors for the population and the patient means, and generic weakly informative

priors for the standard deviations (N+(0,1)). We fitted the model using Stan (v2.19.1), with 80,000

posterior draws after a burn-in period of 500 iterations. The Rbstatistic (<1.01) and MCMC rank histo-

gram plots (Figure 2—figure supplement 1b) were used to assess convergence. Model estimates

are shown in Figure 2. To calculate the coefficient of variation for the non-log-scaled blaCTX-M and

16S rRNA measurements, we use the transform described by Koopmans et al., 1964:

cv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
es

2

ln � 1

p
; (3)

where sln is the estimated standard deviation of the log-scaled data.

Association of antibiotic treatment and changes in resistance
To study the association between antibiotic treatment and resistance we looked at relative abun-

dance of resistance (blaCTX-M abundance/16S rRNA gene abundance) as a marker of natural selec-

tion. First, we computed the changes in relative resistance for every pair of adjacent time points and

for each antibiotic we used a binary variable indicating whether or not a given antibiotic was admin-

istered between these time points. When an antibiotic treatment was on the same day as a swab,

this treatment was allocated to the time interval between this day and the next swab. We first

looked at how changes in relative resistance are associated with courses of any antibiotics, then with

courses of anti-enterbacteriaceae antibiotics to which carriage of blaCTX-M does not confer direct

resistance (colistin, meropenem, ertapenem, imipenem, amoxicillin-clavulanic acid, ampicillin-sulbac-

tam, piperacillin-tazobactam, gentamicin, amikacin, ciprofloxacin, ofloxacin, levofloxacin, tigecycline,

doxicycline), and finally with antibiotics that have a broad-spectrum activity and to which blaCTX-M
does confer resistance (cefepime, ceftazidime, ceftriaxone, cefotaxime, cefuroxime, amoxicillin,

ampicillin). Results are shown in Figure 3, upper panel. We evaluated how likely the observed differ-

ences between treatments are under the assumption of no association between treatment and resis-

tance. For this we did a permutation or ‘reshuffling’ experiment: we randomly reassigned (without

replacement) the antibiotic treatment labels to the data intervals. We compute the distribution of

mean differences from 50,000 permutations and compare this to the observed difference (Figure 3,

lower panel).

Dynamic within-host model
We extended previous modelling approaches to extracting ecological parameters from microbial

ecosystem dynamics (Faust and Raes, 2012; Stein et al., 2013) by applying a Bayesian hidden-state

model, which featured two layers of hidden-state variables: the unobserved mean of the qPCR meas-

urements, and the unobserved true abundances of blaCTX-M or 16S rRNA in the gut. This model

structure allowed us to separate process noise (stochastic effects impacting the gene abundance

change from one day to the next) from observation noise (stochastic effects impacting the swab effi-

ciency, DNA extraction or the qPCR measurements) and also to account for different spacing

between measured time points.

We analysed antibiotic treatment separately by type and route of administration, only including

treatments that occurred in five or more patients (amoxicillin-clavulanic acid (iv), piperacillin-tazobac-

tam (iv), cefuroxime (iv), ceftriaxone (iv), meropenem (iv), imipenem (iv), ciprofloxacin (iv),
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ciprofloxacin (or), amikacin (iv), metronidazole (iv)). Since the blaCTX-M and 16S rRNA measurements

are expected to be proportional to the absolute abundance of the resistance gene and bacterial

load respectively, the ratio blaCTX-M/16S is a measure of the relative abundance of the blaCTX-M gene

in the gut microbiota. Positive or negative selective effects by antibiotics on blaCTX-M mediated resis-

tance are expected to cause shifts in bacteria carrying blaCTX-M versus non-carriers. As a result they

affect blaCTX-M/16S, but quantifying their effects on absolute blaCTX-M abundance is important for

predicting extinction and persistence of the blaCTX-M gene. Under the assumption that 16S rRNA

gene abundance is independent of antibiotic treatment, variation in 16S rRNA would be caused

mainly by the swab procedure and DNA extraction (and other steps in the protocol), and it could be

used to normalise blaCTX-M abundance. However, as we found in Figure 4, certain antibiotic treat-

ments were associated with changes in 16S rRNA abundance. Thus, we used a dynamic model that

explicitly modelled both antibiotic effects on 16S rRNA and on blaCTX-M/16S, from which the effects

on blaCTX-M could then be computed.

Studying the standard deviation between qPCR measurement repeats as a function of the mean,

we observed that qPCR variation remained relatively stable over five orders of magnitude of the

mean measurement (from 1.5 to 6.5 on the log-scale), but it increased quickly for lower magnitudes

(Figure 4—figure supplement 1). In the Bayesian model for different sources of variation described

above, the parameter sqpcr assumed that the qPCR uncertainty is the same across measurements.

Here, we aimed to account for the fact that low measurements of gene copy numbers have higher

uncertainty. We fitted a smooth spline (choosing five degrees of freedom) to the qPCR measure-

ments (red line in Figure 4—figure supplement 1). This let us assign an estimated qPCR standard

deviation to every set of qPCR repeats. We provided those estimates as data to the Bayesian model.

This allowed us to use all qPCR measurements, including extremely low values, without removing

any data points from the analysis. Our model then took the form:

qi;j;g;k ~Nðsi;j;g;sqpcri;j;gÞ;
si;j;g¼16S ~Nðxi;j;b¼16S;sswabÞ;
xi;j;b¼ratio ¼ si;j;g¼CTX�M � si;j;g¼16S;

xi;jþ1;b ~Nðxi;j;b þ f ðabxÞi;j;b;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tjþ1� tj

p
sbio;bÞ;

f ðabxÞi;j;b ¼
Xtjþ1�1

tj

ab þ
Xnz

z¼1

cz;byz;t

 !

;

(4)

where g denotes either blaCTX-M or 16S rRNA, and b denotes either relative resistance (blaCTX-M/16S

rRNA) or 16S rRNA. Then, qi;j;g;k is the k-th qPCR result (log-scaled) of patient i, measured in the sam-

ple with index j, and genetic target g (blaCTX-M or 16S rRNA). The qPCR standard deviation for sam-

ple j and patient i is given through sqpcri;j;g , and it is estimated as described above. si;j;g is the mean of

the qPCR measurements in sample j of patient i, and genetic target g, and xi;j;b¼16S is the 16S

sequence abundance that is actually present at time point j in the gut of patient i. The error intro-

duced by the swab procedure, DNA extraction etc. is given through sswab, and we assume that this

error causes the same perturbations to blaCTX-M and to 16S, such that this error cancels out when

computing the ratio of blaCTX-M and 16S rRNA xi;j;b¼ratio, which on a log-scale is computed as the dif-

ference (si;j;g¼CTX�M � si;j;g¼16S). Further, tj denotes the calendar day of sample j in patient i, and tjþ1

denotes the calendar day of the following sample in the same patient i. The daily biological variabil-

ity of the blaCTX-M/16S ratio and of 16S are given through sbio;b¼ratio and sbio;b¼16S, respectively, withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tjþ1 � tj

p
adjusting the expected random walk variation by the number of days between observations

(Lemons and Langevin, 2002). The ecological dynamics are modelled with the function f ðabxÞi;j;b,
which is the change in the expected value of xi;j;b between sample j and jþ 1. In the definition of

f ðabxÞi;j;b in line 5 of Equation 4, ab denotes the neutral growth or loss of g, cz;b denotes the effect of

antibiotic z on b, and yz;t is a boolean variable indicating whether or not antibiotic z was given on day

t. The term inside the bracket takes, for a single calendar day t, the neutral growth/loss term (ab) and

adds to this the summed effect of all antibiotics given on day t. This is computed for each calendar

day from tj until a day before the subsequent sample (tjþ1 � 1). The effects of all of these days are

then summed up. Note, that xi;j;b denotes the abundance of 16S rRNA, or the relative abundance of

blaCTX-M/16S rRNA, on the log-scale. Exponentiating this variable gives the copy numbers (or copy

number ratio) on the real scale. Therefore, summing all effects on the scale of xi;j;b is equivalent to
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multiplying the exponentiated effects on the scale of copy numbers. For example, consider that

genetic target b¼ 16S in patient i¼ 1 has at the time of sample j¼ 1 an abundance of

10
xi¼1;j¼1;b¼16S ¼ 100 copy numbers and a neutral trend of ab¼16S ¼�0:5. Suppose on the day of this sam-

ple (ti¼1;j¼1) two antibiotics z¼ 1 and z¼ 2 are given with effects cz¼1;b¼16S ¼þ0:5 and cz¼2;b¼16S ¼þ0:1,

then one day after this sample the genetic target abundance has an expected abundance of

100 � 10�0:5 � 10þ0:5 � 10þ0:1 ¼ 126.

In this model, qi;j;g;k and yz;t correspond to measured data, sqpcri;j;g is computed from this data (see

above). All other parameters are estimated: the hidden-state variables are si;j;g, xi;j;g¼16S, and xi;j;g¼ratio,

the noise variables are sswab, sbio;g¼16S, and sbio;g¼ratio, and finally the variables describing the ecology

are ag, cz;g. The model has three likelihood functions. The first (line 1) applies to each single qPCR

result and it relates repeat qPCR measurements to their variability and underlying mean. The second

(line 2) relates qPCR means of 16S rRNA to their variability and the underlying 16S rRNA gene abun-

dance. The third likelihood (line 4) applies to all sample pairs where a previous and following sample

exists from the same patient. This likelihood relates changes in underlying 16S rRNA abundance or

underlying blaCTX-M/16S rRNA to the parameters ab and cz;b, and sbio. All parameters (including all

hidden-states) are estimated simultaneously. We can express the posterior distribution over all esti-

mated parameters (Q), which is conditional on the set of all data (D), and the prior over the parame-

ter space pðQÞ. For readability, here we only keep necessary subscripts:

pðQjDÞ ¼ pðs;x;a;c;sswab;sbiojq;sqpcr;yÞ;
pðQjDÞ / pðQÞ

Y

i;j;g;k

pðqi;j;g;kjsi;j;g;sqpcri;j;gÞ
Y

i;j

pðsi;j;g¼16Sjxi;j;b¼16S;sswabÞ
Q

i;j;b pðxi;jþ1;bjcb;ab;sbio;b;xi;j;b;yÞ:

(5)

On the hidden-state variables we assigned improper uniform priors, on the standard deviations

describing swab and biological variability we assigned standard weakly informative priors (N+(0,1)),

and on the antibiotic effects (c) we assigned conservative priors of the form N(0, 0.1). We fitted the

model using Stan software (v2.19.1), and we sampled 80,000 samples from the posterior with four

independent chains after a burn-in phase of 10,000 samples. The marginal posterior draws of the cz;g

parameters are exponentiated to be on the scale of gene counts. Subtracting one allows us to

express daily effects as percent of increase or decrease relative to the previous day (Figure 4). We

also show marginal posterior distributions together with prior distributions for the cz;g parameters

(Figure 4—figure supplement 2). Diagnostic plots for the MCMC sampling of the cz;g parameters

are shown in Figure 4—figure supplement 3.

We compared our model as given through model definition four to a model without antibiotic

effects (all c parameters set to zero). The number of patients treated with the same antibiotic is too

small to perform cross-validation (iteratively fitting the model to all time series while leaving out

data from one patient, which is then used to assess model predictions). Therefore, we used an effi-

cient approximation of Bayesian leave-one-out cross-validation using Pareto-smoothed importance

sampling (Vehtari et al., 2017).

We forward simulated blaCTX-M data using the dynamic model above and the posterior distribu-

tions from the model fit. We added to the model a threshold below which the blaCTX-M gene

becomes extinct or at least undetectable. According to a study of returning European travelers to

Southeast Asia, ESBL carriers lose detectable resistant bacteria after a median of 30 days

(Arcilla et al., 2017). Accordingly, we simulated blaCTX-M time series without antibiotic treatment

and chose an extinction threshold (0.25 blaCTX-M copy numbers) that achieved the same median

extinction time. We then used this model to repeatedly (2000 times) simulate blaCTX-M carriage dura-

tions, with each simulation using a new draw from the parameter posterior. The resulting distribution

of carriage times contains both the uncertainty in the parameter estimates and uncertainty from the

Markov process (Figure 5, right-hand side). We also draw a set of parameter values from the poste-

rior to simulate blaCTX-M carriage durations repeatedly (200 times) with the same parameters, and

taking the median carriage duration to remove Markov process uncertainty. We repeated this for

300 draws of parameters (Figure 5, left-hand side). We used both of the above methods to simulate

carriage time under different alternative antibiotic treatments. The resulting distributions are shown

in Figure 5.
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